
Exception Handling in VB.NET
Kavita K. Bharti

Assistant Professor
Department of Computer

Durga Mahavidyalaya, Raipur

What is an Exception?

An exception is an unwanted error that occurs during the execution of a program and can be a
system exception or application exception. Exceptions are nothing but some abnormal and
typically an event or condition that arises during the execution, which may interrupt the normal
flow of the program.

An exception can occur due to different reasons, including the following:

o A user has entered incorrect data or performs a division operator, such as an attempt to

divide by zero.

o A connection has been lost in the middle of communication, or system memory has run

out.

Exception Handling

When an error occurred during the execution of a program, the exception provides a way to
transfer control from one part of the program to another using exception handling to handle the
error. VB.NET exception has four built-in keywords such as Try, Catch, Finally, and Throw to
handle and move controls from one part of the program to another.

Keyword Description
Try A try block is used to monitor a particular exception that may throw an exception

within the application.
Catch It is a block of code that catches an exception with an exception handler at the

place in a program where the problem arises.
Finally It is used to execute a set of statements in a program, whether an exception has

occurred.
Throw As the name suggests, a throw handler is used to throw an exception after the

occurrence of a problem.

Exception Classes in VB.NET

In VB.net, there are various types of exceptions represented by classes. And these exception
classes originate from their parent's class 'System.Exception'.

The following are the two exception classes used primarily in VB.NET.

1. System.SystemException

2. System.ApplicationException

System.SystemException: It is a base class that includes all predefined exception classes, and
some system-generated exception classes that have been generated during a run time such
as DivideByZeroException, IndexOutOfRangeException, StackOverflowExpression, and so
on.

System.ApplicationException: It is an exception class that throws an exception defined within
the application by the programmer or developer. Furthermore, we can say that it is a user-defined
exception that inherits from System.ApplicationException class.

Syntax of exception handler block

Try

 ' code or statement to be executed

 [Exit Try block]

' catch statement followed by Try block

Catch [Exception name] As [Exception Type]

[Catch1 Statements] Catch [Exception name] As [Exception Type]

[Exit Try]

 [Finally

 [Finally Statements]]

End Try

In the above syntax, the Try/Catch block is always surrounded by a code that can throw an
exception. And the code is known as a protected code. Furthermore, we can also use multiple
catch statements to catch various types of exceptions in a program, as shown in the syntax.

Example to Exception Handle

Let's create a program to handle an exception using the Try, Catch, and Finally keywords for
Dividing a number by zero in VB.NET programming.

TryException.vb

Module mod1

 Sub ExZero (ByVal a As Integer, ByVal b As Integer)

 Dim res As Integer

 Try

 res = a \ b

 ' Catch block followed by Try block

 Catch ex As DivideByZeroException

 Console.WriteLine(" These exceptions were found in the program {0}", ex)

 ' Finally block will be executed whether there is an exception or not.

 Finally

 Console.WriteLine(" Division result is {0}", res)

 End Try

 End Sub

 Sub Main()

 ExZero(9, 0) ' pass the parameters value

 Console.WriteLine(" Press any key to exit...")

 Console.ReadKey()

 End Sub

End Module

When we execute this code Exception will be generated.

Creating User-Defined Exceptions
It allows us to create custom exceptions derived from the ApplicationException class.
Let's create a program to understand the uses of User-Defined Exceptions in VB.NET Exception
Handling.
Usr_Exp .vb

Module Usr_Exp

 Public Class StudentIsZeroException : Inherits Exception

 Public Sub New(ByVal stdetails As String)

 MyBase.New(stdetails)

 End Sub

 End Class

 Public Class StudentManagement

 Dim stud As Integer = 0

 Sub ShowDetail()

 If (stud = 0) Then

 Throw (New StudentIsZeroException(" Student roll no 'zero' does not exist"))

 Else

 Console.WriteLine(" Student is {0}", stud)

 End If

 End Sub

 End Class

 Sub Main()

 Dim stdmg As StudentManagement = New StudentManagement()

 Try

 stdmg.ShowDetail()

 Catch ex As StudentIsZeroException

 Console.WriteLine(" StudentIsZeroException {0}", ex.message)

 End Try

 Console.ReadKey()

 End Sub

End Module

Output:

Student roll No ‘zero’ does not exist

Using Try-Catch Statement

We can also create a program using the Try-Catch statement in VB.NET to handle the
exceptions.

Try_catch.vb

Imports System

Module Try_catch

 Sub Main(ByVal args As String())

 Dim strName As String = Nothing

 Try

 If strName.Length > 0 Then ' it thows and exception

 Console.WriteLine(" Name of String is {0}", strName)

 End If

 Catch ex As Exception ' it cacthes an exception

 Console.WriteLine(" Catch exception in a proram {0}", ex.Message)

 End Try

 Console.WriteLine(" Press any key to exit...")

 Console.ReadKey()

 End Sub

End Module

